Third-Party Python Modules
Engine flows are written in Python 3.8. In addition to all standard Python modules several third-party modules are available.
Use Cases
The third-party Python modules serve different purposes. Please refer to their individual documentation pages which are linked below.
Available Third-Party Python Modules
The following third-party Python modules are available to be used in your flow scripts:
Module name | Description | Links |
---|---|---|
arrow | Better dates & times for Python | https://arrow.readthedocs.io/en/latest/ |
chevron | A Python implementation of mustache | https://github.com/noahmorrison/chevron |
genson | GenSON is a powerful, user-friendly JSON Schema generator built in Python | https://github.com/wolverdude/GenSON |
holidays | Generate and work with holidays in Python | https://github.com/dr-prodigy/python-holidays |
html5lib | Standards-compliant library for parsing and serializing HTML documents and fragments in Python | https://github.com/html5lib/html5lib-python |
humanize | Python humanize functions | https://humanize.readthedocs.io/en/stable/ |
iso3166 | Standalone ISO 3166-1 country definitions | https://github.com/deactivated/python-iso3166 |
jinja2 | A very fast and expressive template engine | https://github.com/pallets/jinja |
jsonschema | An implementation of the JSON Schema specification for Python | https://github.com/python-jsonschema/jsonschema |
lxml | The lxml XML toolkit for Python | https://github.com/lxml/lxml |
markdown | A Python implementation of John Gruber’s Markdown with Extension support. | https://github.com/Python-Markdown/markdown |
mathplotlib | plotting with Python | https://github.com/matplotlib/matplotlib |
numpy | The fundamental package for scientific computing with Python | https://github.com/numpy/numpy |
pandas | Flexible and powerful data analysis / manipulation library for Python | https://github.com/pandas-dev/pandas |
passlib | The Passlib Python Library | https://passlib.readthedocs.io/en/stable/ |
pdf2image | A python module that wraps the pdftoppm utility to convert PDF to PIL Image object | https://github.com/Belval/pdf2image |
pdftotext | Simple PDF text extraction | https://github.com/jalan/pdftotext |
phonenumbers | Python port of Google's libphonenumber | https://github.com/daviddrysdale/python-phonenumbers |
Pillow | Python Imaging Library | https://github.com/python-pillow/Pillow |
pycryptodomex | A self-contained cryptographic library for Python | https://github.com/Legrandin/pycryptodome |
pyjwt | JSON Web Token implementation in Python | https://github.com/jpadilla/pyjwt |
pyotp | Python One-Time Password Library | https://github.com/pyauth/pyotp |
pyquery | A jquery-like library for python | https://github.com/gawel/pyquery |
python-dateutil | Useful extensions to the standard Python datetime features | https://github.com/dateutil/dateutil |
pytz | World Timezone Definitions for Python | https://pythonhosted.org/pytz/ |
pyyaml | PyYAML-based module to produce pretty and readable YAML-serialized data | https://github.com/mk-fg/pretty-yaml |
ujson | Ultra fast JSON decoder and encoder written in C with Python bindings | https://github.com/ultrajson/ultrajson |
yarl | Yet another URL library | https://github.com/aio-libs/yarl |
note
Contact us at info@cloudomation.com to request additional Python modules.
Examples
Parse a PDF File
You can access the content of PDF files directly in your flow script.
example
Access a date written in a PDF file
import re
import base64
import io
import pdftotext
import flow_api
def handler(system: flow_api.System, this: flow_api.Execution, inputs: dict):
pdf_name = 'example.pdf'
# Open the Engine file object
pdf_file = system.file(pdf_name)
# Files contain binary content which is returned base64 encoded
file_base64 = pdf_file.get('content')
file_bytes = base64.b64decode(file_base64)
# Construct a `PDF` object from the bytes
pdf = pdftotext.PDF(io.BytesIO(file_bytes))
# Access the text of the first page of the PDF file
pdf_text = pdf[0]
# Clear the PDF object, so that the file object is closed
pdf = None
# Use a Regex to find the date
the_date = re.search(r'Date:\s*(\d{4}-[01]\d-[0-3]\d)', pdf_text).group(1)
this.log(the_date)
return this.success('all done')
Work with CSV Files
You can use the csv
module to read CSV files into Python objects or write Python objects into CSV files.
example
Create a CSV file and send it by email.
import base64
import csv
import io
import flow_api
def handler(system: flow_api.System, this: flow_api.Execution, inputs: dict):
fake_data_list = [
{'name': 'spam', 'number': 1},
{'name': 'eggs', 'number': 2},
{'name': 'foo', 'number': 3},
{'name': 'bar', 'number': 4},
]
result_file = io.StringIO()
csv_writer = csv.DictWriter(
result_file,
fieldnames=['name', 'number'],
)
csv_writer.writeheader()
for data in fake_data_list:
csv_writer.writerow(data)
csv_content = result_file.getvalue()
result_file.close()
result_file = None
csv_writer = None
system.file('result.csv').save_text_content(csv_content)
this.connect(
connector_type='SMTP',
from_='me@example.com',
to='you@example.com',
subject= 'Result',
text='See the attached file',
login='me@example.com',
password= '****',
smtp_host= 'SMTP.example.com',
smtp_port= 587,
use_tls= True,
attachments= [
'cloudomation:result.csv',
],
)
return this.success('all done')